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1. Suppose we have a box, and N balls in it. Initially, some of these balls are black and the
rests are white. Now we repeatedly apply the following procedure:

- Randomly choose one of the N balls with equal probability and take it out.

- If the chosen ball is black, we put a white ball into the box.

If the chosen ball is white, we put a black ball into the box.

Let Xn be the number of black balls in the box after repeating the above procedure for
independently n times. So we know X = (Xn)n≥0 is a Markov chain with state space
S = {0, 1, · · · , N} and the transition matrix P , which is given by

P (x, y) =


1− x

N , y = x+ 1
x
N , y = x− 1

0, otherwise.

(1)

(a) Prove that the Markov chain X is irreducible.

By the theorem proved in class, there exists a stationary distribution

µ = (µ(0), µ(1), · · · , µ(N)).

(b) Recall that the stationary distribution µ satisfies µ⊤P = µ⊤, we obtain N + 1 linear
equations µ(n) =

∑N
k=0 µ(k)P (k, n), for n = 0, 1, · · · , N .

Please simplify these equations for the transition matrix defined by (1).

(For example, for n = 0, the linear equation is written as µ(1)/N = µ(0).)

(c) Prove that µ(2) = N(N−1)
2 µ(0) and µ(x) =

(
N
x

)
µ(0) for all x ∈ S.

(d) Compute the stationary distribution µ.

Solution

(a) Let x, y be two different states in S with x < y, then we have

P y−x(x, y) = P (x, x+ 1)P (x+ 1, x+ 2) · · ·P (y − 1, y) = (1− x

N
) · · · (1− y − 1

N
) > 0

and

P y−x(y, x) = P (y, y − 1)P (y − 1, y − 2) · · ·P (x+ 1, x) =
y

N
· · · x+ 1

N
> 0

It follows that x ↔ y and this Markov chain is irreducible.

Since the chain is finite and irreducible, the stationary distribution exists and is
unique.
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(b) Note that P (1, 0) = 1
N and P (k, 0) = 0, k ̸= 1, then

u(0) =
N∑
k=0

µ(k)P (k, 0) = µ(1)P (1, 0) = µ(1) · 1

N
.

For n = 1, · · · , N , we applying P (x, x+ 1) = 1− x
N and P (x, x− 1) = x

N to derive

µ(n) =
N∑
k=0

µ(k)P (k, n) = µ(n− 1)P (n− 1, n) + µ(n+ 1)P (n+ 1, n)

= µ(n− 1) · (1− n− 1

N
) + µ(n+ 1) · n+ 1

N
.

(c) By part (b), we have µ(1) = Nµ(0) and

µ(1) = µ(0) + µ(2)
2

N
,

it follows that

µ(2) =
N

2
(µ(1)− µ(0)) =

N(N − 1)

2
µ(0).

We use Mathematical Induction to prove µ(n) =
(
N
n

)
µ(0) for all n = 1, 2, 3, · · ·N .

First, µ(1) = Nµ(0) =
(
N
1

)
µ(0) holds. Assume that µ(k) =

(
N
k

)
µ(0) holds, then we

prove µ(k + 1) =
(

N
k+1

)
µ(0). Since

u(k + 1) =
N

k + 1
µ(k)− N − k + 1

k + 1
µ(k − 1)

=
N

k + 1

(
N
k

)
µ(0)− N − k + 1

k + 1

(
N
k−1

)
µ(0)

=
(

N
k+1

)
µ(0).

Hence µ(x) =
(
N
x

)
µ(0) for all x ∈ S.

(d) Since µ is a stationary distribution, then µ(0)+µ(1)+ · · ·+µ(N) = 1 By substituting
µ(x) =

(
N
x

)
µ(0) into

N∑
x=0

µ(x) =
N∑

x=0

(
N
x

)
µ(0) = 1

yields

µ(0) =
1∑N

x=0

(
N
x

) =
1

2N
.

It follows that

µ(x) =
(
N
x

) 1

2N
.

2. Consider the simple random walk X = (Xn)n≥0 with state space Z (the set of all integers)
and transition matrix P , which is given by

P (i, j) =

{
1/2, j = i+ 1 or j = i− 1

0, otherwise.

If π is a stationary distribution of X, then
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(a) Prove that π(x−1)+π(x+1)
2 = π(x) for all x ∈ Z.

(b) Let u(x) = π(x)− π(x− 1) for x ∈ Z and prove that u(x) = C for some constant C
for any x ∈ Z.

(c) Prove that π(x) = ax+ b for some constant a, b.

(d) Prove that X does not have a stationary distribution.

Solution

(a) If π is a stationary distribution of X, then for all x ∈ Z

π(x) =
∑
k∈Z

π(k)P (k, x) = π(x− 1)P (x− 1, x) + π(x+ 1)P (x+ 1, x)

=
1

2
π(x− 1) +

1

2
π(x+ 1).

(b) We rewrite π(x−1)+π(x+1)
2 = π(x) as

π(x+ 1)− π(x)

2
=

π(x)− π(x− 1)

2

which implies u(x+1) = u(x) holds for all x ∈ Z. Hence u(x) = C for some non zero
constant C for any x ∈ Z.

(c) Let x be an positive integer,using u(x) = π(x)− π(x− 1) = C , we write

π(x) = C + π(x− 1) = 2C + π(x− 2) = · · · = xC + π(0).

If x is an negative integer, using u(x) = π(x+ 1)− π(x) = C , we obtain

π(x) = π(0)− xC.

Therefore π(x) = Cx+ π(0) holds for x ∈ Z.
(d) If π is a stationary distribution, then π(x) = ax+ b ≥ 0 and∑

x∈Z
π(x) =

∑
x∈Z

(ax+ b) = 1

which is impossible. Hence we conclude that no stationary distribution exists.

3. Consider a Markov chain X = (Xn)n≥0 with state space N (the set of all nonnegative
integers) and transition matrix P , which is given by

P (j, k) =


1, k = j − 1, j ≥ 1,

0, k ̸= j − 1, j ≥ 1,

ν(k), k ∈ N, j = 0.

where ν = {ν(n)}n≥0 is a probability measure on N, i.e. ν(n) ≥ 0 for all n ≥ 0, and∑∞
n=0 ν(n) = 1.

(a) Prove that X is irreducible if and only if ν({n, n+ 1, · · · }) > 0 for any n ∈ N, where
ν({n, n+ 1, · · · }) =

∑∞
k=n ν(k).
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(b) Prove that 0 is recurrent.

(c) Prove that the measure defined by µ(n) = ν({n, n+ 1, · · · }), n ∈ N is stationary, i.e.
µ⊤P = µ⊤.

Solution

(a) If ν({n, n+ 1, · · · }) =
∑∞

k=n ν(k) > 0 holds for all n ≥ 0, then

lim
n→∞

v(n) > 0

which implies that for sufficient large N , 0 → N. Obviously, N → 0.

Next, we show that any two states in this chain is intercommunicate. Without loss
generality, we assume i, j are two different states with i < j, then P j−i(j, i) =
P (Xj−i = i |X0 = j) = 1, so j → i. On the other hand, we can reach j from i
by taking i → 0 → N → j. There for state i and j are intercommunicate, and the
chain is irreducible.

If the chain is irreducible, then all state are intercommunicate and ν(n) > 0 for all
n ≥ 0. Hence ν({n, n+ 1, · · · }) > 0 for any n ∈ N.

(b) Since
P0(τ0 = 1) = P (X1 = 0|X0 = 0) = v(0)

P0(τ0 = 2) = P (X2 = 0, X1 = 1|X0 = 0) = v(1)

and generally

P0(τ0 = n) = P (Xn = 0, X1 = 1, · · ·X2 = n− 2, X1 = n− 1|X0 = 0) = v(n− 1)

Hence

P0(τ0 < ∞) = P (τ0 < ∞|X0 = 0) =

∞∑
k=0

ν(k) = 1

which implies state 0 is recurrent.

(c) We use
∑∞

k=0 ν(k) = 1 to show

µ(n) =
∑
k∈N

µ(k)P (k, n) = µ(0)ν(n) + µ(n+ 1)

= ν(n)

∞∑
k=0

ν(k) + [µ(n)− ν(n)]

= µ(n).

Therefore µ⊤P = µ⊤ and the measure defined by µ(n) = ν({n, n+ 1, · · · }), n ∈ N is
stationary.
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